If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-26-9=0
We add all the numbers together, and all the variables
t^2-35=0
a = 1; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·1·(-35)
Δ = 140
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{140}=\sqrt{4*35}=\sqrt{4}*\sqrt{35}=2\sqrt{35}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{35}}{2*1}=\frac{0-2\sqrt{35}}{2} =-\frac{2\sqrt{35}}{2} =-\sqrt{35} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{35}}{2*1}=\frac{0+2\sqrt{35}}{2} =\frac{2\sqrt{35}}{2} =\sqrt{35} $
| 0.4x-x=168 | | 50*48+25y=2400 | | 21y+7=-21 | | 13x-25=9x-30 | | -4x+32=-6(4x+3x) | | 2^b=0.25 | | 5z+24=9 | | 2(31x-3)=2.2x+6 | | 7(3x+7)=289 | | 4m-5=5m+2 | | -6+z=0 | | -2w-4=0 | | t+6+2t=21 | | 3t+t=44 | | 0.9x=29050000 | | 3c+10=100 | | 3s=15+2s | | 3x-2+8x+18=180 | | (3x+3)-1+2x=11 | | -3+4=7x+24 | | 12a+6=30(a=-2) | | -37+x/3=-3 | | -37+x/3=8 | | 5x-20+3x+10=90 | | 5x-20+3x+20=90 | | -3x=2x+4x-x | | 2x=3x=50 | | 11/3x=11 | | 7x8=65- | | P=15+7d/8 | | 6^6x=36^2x-4 | | x^2-9x+15=-5 |